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-:
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F

SIMPLIFIFIDDENSITY-SFEED

By LipmanBers

SUMMARY

RELATION

Ae a first step toward the computationof ths velocity
distributionalong a wing profile of arbitraryshape in a
compressiblefluid, the circulation-freeflow around a symm-
etrical profile is treatedunder the assumptionof the sim-

. plified density-speedrelationdue to Tchaplygin,K4rm&n, and
Tsien. The velocity distributionproblem is reduced to a non-
linear integralequationwhich is solvedby a fairly rapidly ,Y

‘w convergentiterhtionmethod. Numericalexamplesare given. -.<.
.-.

INTRODUCTION

The centralproblem in the two-dimensionaltheoryof a
potentialflow of a perfect fluid around an airfoilprofile
is that of determinin~the pressure distributionon a profile
of given shape if the speed and direction of the flow at in-
finity (undisturbedflow) are known. A solutionof this
problem should consist not merely of giving a mathematical
existenceproof hut of indicatinga method for obtainingnu-
merical results of reasonableaccuracyin a reasonableamount
of time.

.
The difficultyof the problem depends essentiallyupon

the prescribedspeed at infinity. If this speed does not ex-W
teed a certain limitingvalue (dependingupon the profile) the
flow will be everywheresubsonic. For higher values of the

—’
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speed at infinitytha flow becomes partly supersonic(mixed *
or supercritical flow). Finally,it is probable that for
too high values of the speed at infinitya potentialflow
becomes eithermathematicallyimpossibleor unstable. The *
case of mixed flow is the more importantone, both from the
practicnland theoreticalpoints of view.

—
Nevertheless,it

seems that the completesolutionof the problem of everywhere
subsonic:f’10Wsis ~ necessaryprerequisite-for a eucceasful
attack on the problem o-ftransition”throughthe speed of
sound. --(Infact, at present the very existenceof mixed
flows p~.sta profile has not Yet been proved.) . ~.+

In ;iew of th~ aa.rni~teddi”ffi~ultyof”theproblem It is
advisableto develop the mathematicalapparatusby conelder-
ing first the simplestposeiblecases. The most radical sim-
plificati~nwould be, of course,to neglect compressibility
altogether. Under these assuinptionqthe pressuredistribution
problemhas been solved completely. (See references1 and 2.)
In the present report the followingtwo simplifyingassump-
tions are made: .—

—.

A. Only circulation-freeflows around symmetricalpro-
files are coneide~e~, >

—. —
B* It is assumed that the velocitypotentialsatiefles

the simplifieddifferentialequationresultingfrom the so-
-. called Ohaplygin-K&rm6n-Tsien ea,uationof state. (Cf. ref-

erences:3,4, and 5.)~ .!..- -

.

*

Some remarksmay be made concerningthis second assump-
tion. In general,the velocitypotential W(x,y) satiefie8
the part:taldifferentialequation

where p -,isthe density of i~e flu~d;- si”nce-”the density.is
—

a given function-ofthe.spee.dq
. - . .

.=- -.

P = P(q), q2
... . =(~y~”($?” ‘-’”--- ‘“;2’ -:.-

. - = - w- - - - - - -- - ,-
. , .,-

equation (1-)is -nOril_in~arj”-
.

The function’p(q) is determined w
by the p_res-sur’e--den-sityrelation (ea~ationof state). In an
isentropic‘flowtne pressure p “satisfiestne relation
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p p-Y = constant (3)
●

where Y is the ratio of specificheats for constantpres-
sure and constantvolume. (The standardvalue of Y is
1.405.) This implies the density-speed-relation

.——-.

( -1 qa ‘/(y-’))P= Pol-~—
2 “ao2

(4)

where a. is the speed of sound at A stagnationpoint and,
Po the stagnationdensity. Chaplyginnoticed that the
equstionsatisfiedby the potentialbecomes simpler if the
density-speedrelation Is tkken in the form

‘=’4+$)-’ (5]-

This relationmay be obtainedformallyfrom (4) by setting
Y = -1. Though this value of Y violates fundamentalphys-
ical laws, it should he observedthat only the density-speed

. relationand not the pressure-densityrelationenters in the
eauationfor the notential.

.
*

As a matter of fact, the function (5) behaves qualita- 4
t.ivelyin the same way ae does the function (4) within the
subsonicrange; that is, for o:q~: 2aoa/(1+ Y), and
for small values of q/s. the function (5) gives a good
numericalapproximationto (4).

.—

Von K&rm&n and Tsien justify the use of the value Y = -1
by the remark that it iS possible to determinesuch values
of the constants A and B that the pressure-densityrela-
tion

P = A/p + B

.
Will give a good approximationto the relation (3) for val-
ues of p and p close to some prease”i”gnedvalues,

*
say to

the values of p and p for the undisturbedflow. This”
remark is of Interest as far as computationsof the pressure
distributionare conoerned. It in no way affecte the velocity

-
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&istributionfor, ae it was already noticed,the differential
equationfor the potentialfunctiondepends only upon the
density-speedrelatlon,and the precedingpressure-density
relationleads to the same equation (5) no matter what values
are assignedto A and. B.

It shouldbe emphasized,however,that the ~rimary par-
~ose of this report is not to facilitatethe use of the ap-
plicationof the approximaterelation (5) but rather to de-
velop methodswhich could be extendedto the case of the ac-
tual de:~sity-speedrelation’.

In the following,use will be made of certainresults
containedin a previous report. (6eereference6,)

Th~Lsinvestigation,condu?tedat Brown University,WRS
sponsorodby and conCucted.with the financialaasietanceof
the NationalAdvisory Committeefor Aeronautics.

Tho author largelyprofited from several instructive
discuss~..onshe had with ?rofessorS. E. Warschawski. He
also is “indebtedto Mr. CharlesSaltzerfor competenta9ei8t-
ante.

A(w)

a

a.

B(uJ)

c, CJ

dS2

E(P)

3’

f(w)

fn(W)

.

.

,_—

. *. .-

SYM30LS

i b“
auxiliaryfunctiondefinedby equation (35)

local s’peedof eound
.

speed of sound at a stagnationpoint

auxiliaryfunctiondefiued by equation (Z5) .4.
positivecOnstants

:--- .—.-
non-Euclideanlength elementdefinedby equation (22)

domain exteriorto the profile E’

integraltransformationdefined in section5 <=

functiondefiningthe mapping of the oircle into the
profile P “

..,.-: -.u..— -—
nth approximationto the function f(w) ‘
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G

g(a).
~ik

h(w)

Im( )

F

P

q

q-

~(u)

~“

q:
. ~*(a)

●
M

Mm

R

Re( )

8

s

t

U,v
. W*

. X8Y

z

complexpotential of a compressibleflow

functioninverse to f(w)

coefficientsof the metric (22)

functiondefinedby equation (44)

imaginarypart of ( )

profile surroundedby a compressibleflow

pressure

local speed

speed of the undisturbedflow

value of q at a boundarypoint

distorted speed

distortedspeed of the undisturbedflow
.._—

value of q~ at a boundary point

local Mach number

stream Mach number

radius of the circle in the ~-plane

real part Of ( )

arc length measured along P

length of the curve P

parameteroccurringin section8

componentsof the velocity

distortedvelocity

Cartesiancoordinatein the z-plane

complexvariable

—
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coordinateof the Frofile as a functionof the arc
length

leadingedge

t:?ailingedge

angle at the trailingend

exponentin the adiabaticrelation

thicknessparameterof a symmetricalJoukowskiprofile

cc}n~tantsoccurringin section8

slope of the profile F

angle betwean the velocityvector and the x-axis

value of 0 on the boundary

auxiliarycomplex variable

square of the distortedspeed of the undisturbedflow

functiondefinedby equation (54)

Cartesiancoordinatesin the ~-plane

density

stagnationdenstty

dimensionlesslength parnmeteralong the profile P

“

velocitypotential

value of cp at the boundary

auxiliaryanalyticfunctiondefined‘byequation (34)
,.. .—.-

stream function H

argumentof a point on the circle It]= ~
.
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ANALYSIS .-.

1. The BoundaiyValue Problem

Considera symmetricalprofile P in the plane of the
complexvariable z a x + Ly. It will be assumed.that P
is a smooth ourve, except,parhaps, for a sharp angle at the
trailingedge ZT, that the x-axis is parallel to the axis
of symmetryof the profile and that the Trofile is given by
an equation of the form

z = z(s), 0<sss (6)

where e is the aro length“onthe aurve P measured in the
oounterolockw$sedireotlonfrom the point zTs Then S ia
the total length of the profile and

?iL = 2(S/2)

is the leading edge. It will be convenientto introducethe
dimensianlesapar~meter

u= 2m/s (’7)

The function

e(o) = arg Z~(aS/2n)

where
(8)

Z[(a) = tizfds

depends only upon the shapebut not upon the size or posi-
tion of P. Note that by virtue of the foregoing-assumptions

Q(o) = l-r- a/2, e(m) = 3n/2, EI(21T)= 2’TT+ 42

where a ia the angle at the trailingedge, O~aSn,
and

@2Tr - u) = 3m - Q(a), 0<CS7T (9)

The equationof the curve P may be written in the form
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Now let adv(x, y) be the potentialof a circulation-
free f].owof a oompreseiblefluid past the profile P; that
is, a functionsuch that

r

are the coinponentsof the velocity in the x- and y-direotiona,
respectively, a. being the iapeodof sound at a stagnation
point. The function Q(X,Y) is defined and one-valuedin
the donain E(P) exteriorto J? and satisfiesthe boundary
condition

as well as the condition

Herep ~/~n denotesdifferentiationin the direc>ionnorrpal
to and qm “is the syeed of the flow far away from-the
profile (undisturbedflow),

The conjugatecomplexvelocity is given by

where q ie the speed and Q the angle between the velooity
vector and the x-axis. The function % eatiefiesthe condi- ‘
tion

e =0-7? on the upper bank of P
(14)

e =e-2Tr on the lower bank of F

—-
.

●

and
0 + O ae z+ ~-
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Under the assumptionof the approximatedensity-speed
relation (of, Introduction)

the equationof continuity

takes the form .-

This is the classicalequationof a minimal surfaae.

The determinationof the flow around a given profile P
requiresthe integrationof the differentialea-uation(15)
under the boundaryconditions (11) and (12). In the case of
an incompressibleflow the correspondingboundaryvalue prob-
lem can be reduced to the problem of mapping the &omain E(P)
conformablyinto a domain exteriorto a ci.role.A similar
mapping will be &efined presently for the flow considered
here.

2. Mapping.ofthe Profile into a Circle

The stream function of the flow *(x$Y) is definedby
the equations

.

This functionis constantalong any streamlineand can be
normalizedso that

—
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*“ O on P

The complexpotential G(5) is definedby

G(s) = Cp(x,y)+ I*(x,y)

Let the potential ~ be normalizedBO that

~L = ‘~T

where (p‘L denotee the value of v at 5 =

NACA TN No. 1006

.

(16)

.

~L and ~T the
value of ~ at % = ~T, This oan alwayshe achievedby addi-
ng a constantto T* The function —

G = G(z) (17)

maps the domain E(P) into the domain in the G-plant?e%- .
terior ‘cothe aili.t

v-o, .-v~~v~v~ (18)
..

This lai;terdomain is now mapped oonformallyinto the domain
ICI~ R in the plane of the complexvariable g=t+ill
by mean~jof the re~ation

Equations (17) and (19) define a transformation

!.= &(X,Y), n = n(x,y)

of the domain E(P) Intc)the domain 1~1~R.

z=z~, ~=ZT, ~=m

are taken into the points

~= -R, .!.=R, ~=~

ret3pectively.If R is chosen as

(29)

.

A

(20)

The points

.

.
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.
~ = Wao ‘ (21)

2qm
-

the mapping (20) satisfiesthe conditions
—

By virtue of the foregoingmapping there exists a onO-
to-one correspondencebetween the points of the profile P
and those of the cirole l~l=R. This correspondencecan be
describedby means of a function

u= f(w)

such that the point Z [f(wJ)S/2n~correspondsto the point
ReLw. Plainly f(w) is an increasingfunction satisfying
the conditions

f(o) = o, f(m) = ?T, f(2TT)= 2TT (23)

as well as the symmetry condition

. f(2Tr-uJ)= 21T- f(w), o<w<lT “(24)——

In the followingsectionsit will be shown that the knowledge
of the function f(w) impliesthe knowledgeof the velocity
distributionalong P. --

Remark: In the case of an incompressibleflow the mapping
Just constructediS exactlythe standardconformalmapping of
the profile into a circle. In the case consideredhere the
mapping (20) is conformalwith respectto the Riemann metric
(dS) defined in E(l?) by means of the formulas

dSa = glldx2 + 2g=adx dy + g2adya (25)

where

. a.a + q~ Cosae
gll =

a.a+~a
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Qzsin e COF4 0 .
gia = a+qa

ao .—

ao2 + qzsirt2e
.!s22=

a.2+%?
Whe proof of this--assertionfollows ?Qmediately“fromthe re-
sults of a previousreporii. (See reference6.)

7<, VelocityDistributionExpressed.in Terms

of’ the Function f(w)

At a point t = Reiw equation (19) takes the form

or, by (21)

Now let Q(a) denote the value of q
l?urther~!~~’fl~

at a point
and $(U) the value of 9 at this point.

w= g(a) (27)

be the functioninverse to f(w). By (26)

On the other hand, on the profile P

SO that

(2a)

.

(29) -

*

(30) .—
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. This formula shows that the function g(a), and therefore
also the function f(u)) determinesthe velocity distribution
along P but for a constantfactor.

.
A formulapermittinga completedeterminationof the

velocitydistributioncan be derivedby introducingthe so-
called distortedvelocity w* definedby

where q=

Note that

W* = ~*e-ie

is the distortedspeed given by

~~=1

sol+*

q* always satisfiesthe inequality
It has been shown (see, for instanoe,reference

(31)

,:

(32)

rJ<q* <l.
6) that the

complexpotential G is an analyticfunction of the variable
w*. Therefore W* is an analytic functionof G and hence
also of the complexvariable t. The function w* does not
vanish, texcept at the points = -R and t = R. The imag-
inary part of the logarithmof w* is -6. Along the circle
Icl=R the function -9 may be regardedas a function of

. the real variable w, = ReiW.c This functionpossesses
jumps of the magnitude cc and m at w = O and W = m,
respectively. It follows from known theorems of function
theory that at = -Rt the funotion w* vanishes as (t + R)

and at c =Ras(~- R)a\~, respectively. Furthermore

w*(m) = ~>> () (33)

Hence the function

(34)

.
is regular for 1~1~R, continuousfor Ill= R, and no-
where equal to either ~ero or infinity.

m
Thereforelog X(c) is a onewalued analyticfunotion

which is continuouson ths circle
t

It!=R
= 03. Set

and regular at



log X(Iieiw)= A(w) + 5.33(LU) (3.5)

A(w) may be expressedin tarms @f B(w) by meanflof the
well-knownformula

(36)

..

where ,Am is the value of log IX!at inf~nity. (See, for
instanca,referenoe7, p. 243.) NOW bY (33) and (34]

and

B(m) = iu)-~[f(w)l-arg(l+ e )-~ arg(e‘w-’)+ o’~)w ‘3”

Here 6(o) and N(a) denote the v~lues of”0 and q*,
respectively,at the potnt z(Crs/2m) of 2. Voting that

11 + eiwl = 21cosJ4, 1 - eiwl = 2 sin
2
II

I :1

and that

-{

g
iU.J 2

arg(l + e ) =
~+~
2

iw”l)=J&+Earg(e
22

as well as that by (14-)

{

@[f(uJ)]- Tl
;[f(w))=“

El[f(w)]- 2TI

for

for

for

for

()<w <’n
(40)

lT<wc2Tr

.

.

.. - .-—

.

.

.

a
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ea,uations (38) and (39) can be written in the form—-

log 5*
[1
f(w) = A(w) + log{~+:lc”’4lain:‘}

B(w) = [1-ef(w) +*W+
c-:)

From (41), (42),and (36), it followsthat

where

15

(41)

(42).

(43)

(45)

h(w)= ~~m~[f(w+t)]-~[f (u-t)]-~t} cot &t (44)

Since by (32)

_=~ 1 ~*ao
(
—-

q 2 ~* )

it follows from (43) that

ao=~

[1
{

~ e-h(w)
Q f(w) q* 2+g

co’ ~ II IwlT
~2 2 sin —2

2(1+%)
-A2

Cofi4s’.r ‘(w)}’46)
where

a
A = (Q)2 = ~

[1 ,$+~~

(47)
b
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This IS ths deeired ex?z?eseionof ~(a) in terms of the” -
funotion f(w). The ~arame$er A may be used ingtead of
qJao to determinothe conditionsat infinity, Thi~ param-
eter can be eaeily ex2rag60din terms of the streamMach ntim- .
bor (cf, reference6):

The fact that tho ~elooitydistributioncan be expressed
in terms of the function i’(w) in two differentways permits
the derivationof-an integralequationfor the function f(u)),

..-

4, The IntegralI!quationfor tho Function f(w)

Nq,uations(28) and (29) may be written in the form

-r I I2wao d~[f(m)] 11]q f(w) = ~ .—
dW fl(~)

Combiningthese two equationsyields the relation

2R~f!(w)=z a. — IsinWI (49)
s ~[f(ut)la.

Now sublstittztein (49) the value of aglq given by (46).
Then

.

.- l-~
ft(w)=csin ~

1{
e-h(d-~2-’vos~121sin~

where
1‘f ITR qmc 2 ——=

S aoq~

-—

.

—.-.. —

> ------ .-
— ..-—

---

and h(w) and h are given by (44) and (47), respectively.
Integrating



.
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f(w) ~

f 2(1+7Q)
= c sill $ ‘-7$(%2

“-0

17

‘Oswin%I%”h(w’
Setting w = 21T here it follows from (24) that

so that finally

. Sinca h(UJt is given by formula (44) this is a nonlinear
integralequatioufor the unknown function f(w).

.

5, Solution of the IntegralEquation

The Integralequation (51) can %e written In the form

‘(w)=r{Wf(w’)}-----‘.
where ‘P,’(W’)}denotes the right-handside of (51):.The-oper-

ation F is a functionaltransformationwhich takes a con-
tinuouslydifferentiablefunction f(w})
ditions

satisfyingthe con-

f(o) = o f(217)= 2n
.

into a functionsatisfyingthe same end-pointconditions.
● Thereforethe solution of (51) can be attemptedby the iter-

ation method, Choose some function fo(~) satisfyingthe
preceding conditionsand compute successively



--

1.8 .

f 1Y1(UJ) = ~ p, fo(w’)j

“(W} = Fit “(w)}”
---- ---- --

f
{

J@ = ~ f-u,fa(,wf)
}

.- ----- -----

If the sequence

fo(w), f~(w)), Wab fn(lu), cm.

.

.—

—

convergestoward a fcnotion f(w) and lim F(fn) = F(f), this
function....f aatiefieatha integralequation,

~.romthe p~~relynath~maticalpoint of view it wOuld be
neaescaryto eupplemnntt!~apreaedingaoneideration%y prov-
iag thet under suitableassuretion:(i) the integralequa-
tion po~sessesa solution,(ii7 this solutionoan be obtained
by iterations,and (iii) thie solutionig an inoreae$ng
function, It is hoped that such proofs will be presentedat
some lat~r date, At present it may suffiaeto state that
the statement (i) to (iii) seem to be verified in the oaseeI
for whioh the computationshave been oarried out, The ex-
Istonoe of an increasingfunotionsatisfyingthe integral
equationseems quite obviouefrom physicalreasons, As for
the convergenceof the method,referenceis made tO the faot
that the method describedhere is rather similar to
Theodorsenlsmethod of conformalmapping (references1 and 2)
for which a rigorousconvergenceproof has been found (rof-
erenoe 8),

It might be noted that the de81red solutlon f(w) must
fiatiefy.the symmetryoondition

f(2T’r- Lu)= 21T- f(w), fl(2Tr- w) = fl(w) (52)

If the funotion fo(w) satisfiesthis condition,so will
all 9uooessiveapproximations fn(w). It will thereforebe
sufficientto compute fn(ul) only in the interval O<W<TT.

.

●

—-

.

.
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. The only nontrivialstep in computingthe funotions
fn(w) consistsin evaluatingthe integral

.
l-r

h
f{ ,}n+l(W)=& ‘n+l(w+ t)- Ln+~(W-’) Cot$d’ (53)
o

where

An+.(w)
[1

=@ fn(w) -.*W (54)

(Cf. equations(51) and (44).) It ehouldbe noted that this
is a proper Riemann integral, In fact, the value of the in-
tegrand at t = O is

An+l(w+ t) - An+l(w- t)
llm

{ (
~2t cot a

t+o 2’G )}

= 4A~+l(w)= 4
{
e’ [fn(w)l f:(w) - *

}

By using this information,the integral (53) can he evaluated
numerically,say by the trapezoidalrule.

After f(w) has been computedwith sufficientaccuraoy,
the velocitydistributionis computedby means of formula
(46).

,,

6. Choice of the Function fo(w)

The rapidity of convergenceof the iterationmethod for
solving equation (51) will depend upon the choice of the
function fo(w), the Oth approximation. In order to”reduoe
the computationalwork, this functionshould always satisfy.
condition (52).

A few methods of choo~ingthe function
0

fo(w) are
listed, in the order of preference:



20

(m) Choose for fo(w) the solutionof equation (51) .

for a “?alue Al as close as possible to tho value of h for
which ‘theequationis to be solved, .

(13) Choose for fo(w) the solutionof equation (51) for
the def}iredvalue of I ,orfor a valuo Al clo8e to the de-
sired value, and for a profile Pr differentfrom but clo~e
to P. “

(?’) Ohooee for fo(w) the functionresultingfrom the
conformalmapping of the profile P onto a circle;that 1s, “
the solutionof (51) for A so,

(5) Choose for fo(w) a functionapproximatingthe ..—
functicnresultingfrom the oonformalmapping of the profile
P onta a circle. For thin profiles such a funotionis given
w

fo(w) = : (1 - Cos w), O<W<TT

(55)

.

Note th-~t(Y) is a speoialcase of (a) (set ~’ = 0) and (8)
a Spoci”a–lcase of (~) (set At = O and choose P] as a .

etraigh.tsegment).

‘7.VelocityDistributionat Points Not on the Profile

It remains to chow how the knowledgeof the function
f(w) porrnitsthe computationof the velocitydistribution
at poin”;snot on the profile, This is done by means of the
followiiigtheoremwhich also shows that solutionof the in-
tegral oquat50n (51) actuallyyields a eolution of the bound-
ary value problem stated in section1,

Note first that from the way the i.nteg~alequationhas
been set up it follows that there exists an analyticfunction
W*(C) regular for /~ I>1 and such that .

(56) ●

.— ., ..s ...-
-. —

--
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where ;* is given 3Y (43) and (44) and
f(eiu) is known,

~ ~Y (40). If
W*(L) can be computed,eay by Cauchy!s

formula:

f

aTl
w*(eiW)eiWdww*(g) = .*

eiw
+ q*m

o -c
(57)

NOW the followingtheoremholds:

Let f(w) be an.increasingfunctionsatisfying(51).
&&—

—

where Cl is a real constantand the bar denotes the con-
jugate complexquantity. ‘I’hetransformation

x = X(f,n), y = Y(t, n) (59)

of the z-plane into the ~-planedefinedby (58) (for Itl>l)
is one-to-one. It takes the domain 1~[>1 into the domain
E(P) exteriorto ths profile P.

Q (
= 2ClRe ~

The function

+~
t)

(60)

consideredas a function of x is the desiredpoten-
tial of the compressibleflow around P; that is, it satis-
fies the differentialeauation (15), the boundary
(11) and the condition (12).

condition

.. ---- -—
.

The proof of this theoremwill be found in the appendix.

After
●

cp is found, the velocity components u and v
can be determi,nsdby differentiation. But it is also true
that y~* consi?.erelas a function of z
velocity (cf. see. 3) and therefore

is the dtstorted



,---

22 NACA TN No, 1006

2 IW*I W* .
u - iv =“ao .—

1- ~w*\~ t~*l
.

The proof of this last statementis left to the reader.
----

8, Examples

A3 an illustrationof the method,velocity distributlong
have been computedfor a oircle and for a symmetrloalJoukowski
profilo with c = 0,25 (c bein~ the usual parameterdetermini-
ng tho thickness), The followingvalues of A have been used

A = 0.045 for the circle
.... , ..-..--&—.

A = 0,157 for the Joukowskiprofile

These Correspondto the followingvalues of the stream Mach
num%er ..—

Mm = 0+406 for the circle

Ma = 0.685 for the Joukowskiprofile .

These values of Mm “arek“nownto be olose to the critical
values, (The criticalstreamMaah number is the streamMach ‘
number for which the maximum local Mach number is equal to
unity,)

In the ease of the cirole

El(u)= G+;, @![cr)=l, cc=Tr

It is natural to set

fo(w) = w

This correspondsto case (Y) of section6. The first approx-
imation--iseasily oomputedin closed

f~ (UJ) A.IJJ+
1 - “2A

form and is equal to .

sin 2W
●

In the ease of the Joukowskiprofile

—
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a = o

23

The function @(s) and Cl’(s) are given by the parametric
formulae

r
4 aot t

1
(.Cott)’ + +

@=n + t - tan-l
c ,1

[ 1

a
(cot’t)a + y -

a
4(cot t)

!lQ. —Csc t
{

(1- d(l+3d(,in ~)4 + ~(*in t)a - s~a
as 8<1 ~a - } ..

where the parameter t rangee from t ‘ o to t = ~ and

Ca =

~3 =

are constantsdeterminedby

Trg

[
2(1+6) C3 tanh-l c= - cat.anhul.Ca

1

m. -—..—

The proof of these formulaswill be found in reference9.
The function S, e, d@/ds are tabulatedin tatle I. The ap-
proximationof order O has again been chosen accordingtO

. case (v) of section 6. In the case of a circle the func-
tion f(w) must satisfy the symmetryrelation”

*
f(ll- w) = ~ - f(w)

.
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It is--thereforesuffi~fent*O considerthis functionin the
interval o~~~n~a, Accordinglythe fuqctioge fn(w)
have been computedfor ().jSO*, 10Q, ,,., 900, In the case
of the Joukowskiprofile, the functions fn(w) have been
computedfor w = 0°, 10°, .,., 180°. The convergenceof
the suaaeasiveapproximationsis eeen from tables II,

The resultingvelocitydistributionsare given in tablee
111 and plotted in figures1 and 2, The argument 6 ia the
argument of a point on the cirsle into whioh the profileie
mapped conformably, The results obtainedhave been compared
with those arising from the K&rmdn-Tslenvelocity correction
formula

(61)

()where ~ is the value of the ratio at local velocity to
qm i

velocityat infinityfor an incompressiblefluid. To use
this formulaamounts to replaoingthe funotion f(w) by the
functionarising in conformalmapping of the profile into
the cirole, In the case of the Joukoweki profile Kaplan’s
resultE~(reference10) obtainedby a modifiedpoggi method
are also given for the sake of comparison,

It will be noticed that the.presentmethod (whichcon-
sists af an actual solutionof the %oundaryvalue problem
for the case ‘Y= -1) gives a greater compreaeibilityeffeat
than the one predictedby the approximatemethods mentioned.
(To evaluatethis remark correctly,note that Von K&rm&n ex-
pressed the opinionthat in the ease when the assumption
y=.1 Is applied to air and formula (61) is ueed, the error
oommittedin using this formula seems to oounteraotthe error
committedin usin~ the incorreotpressure-densityrelation.)

-

CONCLUDINGREMARKS . ——

It has been shown that under the
.

assumptionof the lin-
earizedpressure-volumerelationand of a symmetricalflow
the velocitydistributionof the compreselbleflow past a
wing seotionOf arbitrarygiven shape o~n be determinedrig-

h

orouglyby a method which requiresnot conalderablymore

—

—,
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● computationallabor than the case of an incompressibleflow.
This iS, of course, only the first step toward the complete
solutionof the velocity distributionproblem. The next

. step should consist of extendingthe present method (a) to
the case of the actual adiabaticpressure-densityrelation,
(b) to the case of a circulatoryflow around a not nec”essar-
ily symmetricalobstacle.

Remark: After this paper was completedthe author
learn~ut a paper by Slioskin (referencii11), in which
the same problem is reduced to an integra-differentialequa-
tion, differentfrom the one da~ived in this paper.

Brown University,
Providence,R. I., Nay 1945.
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APP13NDIX —
—

Th:lsappendixoontainsthe proof of the theoremstated
in section7.

!I!hsmappingpropertiesof the function (58) follow im-
mediatelyfrom the followingthree statements.

(a) The function (68) takes the.point t = Q into the
point !?:=.=. &

(b) The function (58)maps the circle ICI-1 in a one-
to-onemanner into the profile P. .-

(o) The Jacobian

is poslttve for all values of t and ~, fa+nz>lo

kTo verify (a ,observe that as [+~, w* approachoe
the value qw = > o*

TO ve~~fy (b),note that the integralsin (5i)”areinde-
pendent of che path sinoe the i.ntegraadsare anal~tfcfunc-
t-ionsof c. In order to obtain tl:einage of 1~1= 1 the
integrat:lonmny be performedalong the circle, But for

t= eiw

.

&

.
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. (1”$)’’=-2S’”W’W
● whereas ~*(eiul) is given by (56). Hence the equationof

the ourve into which {Cl=l is taken may be written in
the form

w

= 2 (11
f{

1

}

i {lT+&[f(w)-1} ~wz ~*[f(w)] sin we
‘o q*[f(w)]-

Set U = f(w) and note that the integral equation (51) im-
plies that f(2Tr)= 2n. By virtue of (40), (45), and (49)
the preceding equationmay be written in the followingforms:

w

= o~ ! fl(u) y(w)~z dW, osw<2Tf (Al)
“o

(A2)

where c~ is a new positive constant. Equation (Al) shows
that Icl=l is taken into P (of. equation (10) and note
that Y is determinedbut for a scale faotor). Equation
(A2) shows that the mapping of the circle into P is one-
to-one, for by hypothesis,

ft(fJJ)> () (A3)

TO verify (c), observethat it follows from (A3), (43)
w*(eiW)J< 1.and (50) that
!

Since the maximum of the rod-
UIUS of an ana ytic functionie attained on the boundary,.

(.+ )

Now the Jacobianis equal to
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SO that hy (A4)

.

k

. . .
.-

.- -—

.—

J>O for 1+1
Next, equations(58) and (GO) may be rewrittenin the

form .—

x= RGXl(~), y = Rexa(c), z = Rex3(!) [A5)
—

where

since

X;a ta la+x~+x3=o

(A6) ie a,WeierOtrassianparametricrepresent=attonof a mini-
mal sur~;ace.In other wor~e, consideredas a funotion of
x and y satisfiesequation (~5).

.--- ..-

.

-. —
—...

——

.

4
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A simple computationshows that a line element normal
to the circle Igl=l is taken by the mapping (58) into a
line-elementnormal to the profile P. Since the nortial
derivativeof cp in the ~-planevanishes so does the normal
derivativeof Q in the z-plane. ThuS q consideredas a“
funation of x and. y satisfiesthe boundary condition (11).

Since

and W*(=) = ~*m, it follows from (58) that as ~-4-

.—

eo that

NOw, as to+
ap aip~.
a

+2C1 ,
K

and therefore

ae z-+~, Thus condition (12) is also verified.
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Functdonsenteringintothecomutationof thevelocity
!dlstrj.butionalonga symmetric Joukowski~rof~lewith.

e = .15

t

0.00
●02
.04
.06
.08

,10
,12
●14
●16
.18

.%!0
,22
.24
●26
.28

●30
●32
● 84
●36
.3a

.40

.42

:Z
.48

● 50
.52
●54
●56
.58

● 60
.62
.64
●66
.68

.70
●72
●74
.76
.78

s—.
0,0000
.0667
●2548
●5191
●81.48

1.1C)62
1.&Y1’23
1.6C)66
1.8C)71
1.9766

2●11.93
2.$3895
2●34:07
8.42652.4:,95

2.5620
2●61!58
2.6623
2.7029
2.7285

2.7097
2.7975
2.8221
2.84.42
2.8640

2●8818
2.8980
2Q9127
2.9261
2.9384

2.9497
2.9600
2.9697
2.9786
2,9869

2.9946
3.0019
3.0087
3.0150
3.0210
——

6?
3.1416
3.0834
3.0353
3.0034
2.9888

2.9892
3.0009
5.0206
3,0453
3.0730

3.1024
3.1326
g●;:(3:

3:2252

8●25S6
3.2816
B●3101
3.3381
3*3655

8.3926
3.4192
8.4454
5.4712
5.4968

3.5220
3.5469
3.5715
3.5959
5.6201

3●6441
3.6679
3.6s15
3.7149
3.7382

3.7614
3.7844
3s8073
3 ● 8302
3s8529

d@/@

-.4076
-.1751
-.0804
-●0220

+.0238
+.0647
+.1040
+.1437
+,1850

+.22S7
+.2757
+.3264
+,3813
+.4408

+.5052
+.5750

+.8185

+,9119

+1●3500

+1,4761
+1.6089

+2,5419
+2.7190
+2●9014

+3.0895
+3.2823

t

0:::
.84
●86
.88

●90
.92
● 94
●96
.98

1.00
1.02
1.04
1.06
1.08

1,10
1.12
1.14
1.16
1.18

1.20
1.22
1.24
1.26
1.28

1.30
1.32
1.34
1.36
1.38

1.40
1.42
1.44
1.46
1.48

1.50
1.52
1.54
1.56
1●570{

s

3.026’7
3●0?30
3.0371
a●0419
3●0465

3.0510
3.0551
3s0591
3.0629
3●0666

3●0701
3●0735
3.3768
3.0800
3.0831

3.0861
3.0890
3.0918
3●0945
3.0972

3.0998
3●1024
3● 1049
3c1073
3.1097

3.1121
3●1144
3.1167
3●1390
3●1212

3.1234
3.1256
3.1277
3.1299
3.1320

3.1341
3.1363
3.1384
3.1405
3.1416

63
3●8?55
3.8980
3.9204
3.9428
3.9650

3.9873
4.0094
4.0315
4.0535
4.0755

4.0975
4.1194
4.1412
4,1630
4.1848

4.2065
4.2282
4,2499
4.2715
4.2932

4.3148
4.3363
4.3579
4*3794
4,4009

:●4J;:

4:4653
4.4868
4.5082

4●5297
4.5511
4.5725
4.5939
4.6153

4.6367
4.6581
4.6794
4.7008
4.7124

d@/dS

~

+5.8608II
+6.0844~

+6,3066 ~
+6.5277 ~
+6.7464 Ii
+6s9650

10●177
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Table 118.

Successiveapproximationsto the functiont(ti)in the
case of a cj.icle(Mm=”’.4Of3,A = .045) -

●17453
●S4907
.52360
.69813

.87266
1.04720
~.::;;:

1:57030

00000
:1’7458

Oom 00000
:;:;:; :28171

●84907 .36239
.52360 ●56643 .54122
,69813 .74683I .71769

.87266 .92136
1.047201.09003
1.221731.25352

.89172
1,06355
1,23362

I1.5$6261.41317~1.40250
I1.570801.5’70801,57080

T;;;:;:10420
●36808

● 55287 c54900
●73138 ●72673

.90587
1●07635
1c24533
1,40768
1c57079

.90095
1s07183
1.23985
1.40586
1.57080

fs(!U)

.36976
●55135
.72951

●90388
1.07450
1●24191
1.40698
1.57080

Table IIb.

Successiveapproximationsto thefunctionf(u)in the
case.ofa SynUn~~5iCM$Joukowskiprofile(G= .15,

UW= ~ , = .469)
~.

10
●3490

:: .5236
40 .6981

:: 1::%
70 1.2217
00 1.3962
90 1●5708

11001.7453
1101,9198
1202.0944
130 ,2689
140 .4434

1502,6180
1602,7925
170 .9670
1803o1416

to(w)

0000
:0437
.1273
.2570
.4470

●6645
.9078
1.1682
1.4332
1.6956

1,9502
2.1857
2.4016
2,59s2
2.7555

2.8902
2.9964
3.0773
5.1416

fl (f’J)
0000
:0524
.1275
.2’786
.4762

●7090
.9649
1.2320
1.4996
1.7586

2 ●0022
2.2253
2.4S!48
2s59!42
2.7481

2.87f?8
2.9764
3.0639
3.1416

fz(~)
0000
:0323
:;;;:

.4755

.7970

.9609
1.2257.
1.4909
1.7484

1●9914
2.2156
2.4174
2●5956
2●7494

2.8787
2.9850
3,0702
3●1416

-~mu&-

●1271
●2779
.4750

.7068

.9615
1,2270
1,4931
1●7514

1.9951
2.2193
2.4208
2t5982
2.7501

2,0776
2●9821
3.0675
3,1416

fq(~)

-–mm&–

.1275
●2787
●4760

●7078
.9620
1.2272
1.4928
1,7508

1.9943.
2●2182
2●4199
2.5972
2●7495

2●8778
2●9881
3●0686
3●1416
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Velocitydistributionabouta circle(M@=.406)
.

Present” K~rm~n-Tsien
Method Method..

0●000 0.000
●zw5 ●383
.675 .667
1.014 1●000
1.350 1.826

1.671 1.636
1.952 1.912
2.185 2.134
2.336 2.279
2.389 2.829

.

Incompressible/

I

1,000
1 ● 286

1.532
1,732
1 ● 879

‘1.970
2 ●000

I

..—

!C~bleIIIb

Velocitydistributionabout~ Joukowskiprofile(~=.15,M-=.685)

N-
—4

~ Alw Present K6rrn6n-TsienKaplan Incompressible
Method Method~

m)
110
120
130
140

150
160
170
180

.835

.847

.8’?3

.912

●957
:●C&

1:142
1.215

1.289 ‘
1●360 I
1,417
1.446
1.427

I
1.32!5
1●088
.645
0.000

.849
●854
.869
●894
.928

●970
1●019
16073
1.132
1●191

1.250
1●303
1.347
1.373
1.369

1.308
1.128
.704

0.000

.839

.852

.867

.892

.927

●970
1● 021
1.078
1:139
1.203

1.265
1.322
1.360
1●394
1.385

1.512
1.110
.674

0.000

.87C?

.07’4

.087
●909
.938

.974
1.016
1.061
1●109
1,157

1.203
1.244
1●270
1.297
1.294

1.247
1.106
.738

0.000
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